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Seed size strongly affects cascades on random networks
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The average avalanche size in the Watts model of threshold dynamics on random networks of arbitrary
degree distribution is determined analytically. Existence criteria for global cascades are shown to depend
sensitively on the size of the initial seed disturbance. The dependence of cascade size upon the mean degree z
of the network is known to exhibit several transitions—these are typically continuous at low z and discontinu-
ous at high z; here it is demonstrated that the low-z transition may in fact be discontinuous in certain parameter
regimes. Connections between these results and the zero-temperature random-field Ising model on random

graphs are discussed.
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Dynamical models on networks have attracted a great deal
of recent research interest; see the reviews [1-3] and refer-
ences therein. Of particular interest are the effects of the
topological structure of the network upon the time evolution
of dynamical quantities. Under certain circumstances a
change of state at a small number of network nodes may
cause a cascade of changes over the whole network—such
cascades may occur as, for example, overload failures [4-9],
avalanches in sandpile models [10,11], evolution of species
[12], or the spread of rumors and fads in social networks
[13-15].

In this paper, we analyze a model of dynamics on random
networks from the class of problems known as binary deci-
sions with externalities [16]. Each node of an undirected net-
work represents an agent, and may be in one of two states,
called active and inactive. The network is chosen from an
ensemble of graphs with a specified degree distribution py,
i.e., the probability that a node has degree k is p;, with
2pi=1[1,17]. Each agent also has a (frozen) random thresh-
old r, chosen from a distribution with F(r) denoting the
probability that an agent has threshold less than r. Initially
the network is seeded by activating a randomly chosen frac-
tion py of the N nodes. When updated, an inactive agent
calculates the fraction of its neighbors who are currently ac-
tive (m/k, where k is the degree of the node and m is the
number of active neighbors), and it becomes active if this
fraction exceeds his threshold r. Once active, an agent cannot
become inactive; this will be referred to as the permanently
active property (PAP). Isolated nodes (degree k=0) are never
updated. It can be shown that (unlike some other sequential
spin-flip models [18]) the steady state of the system does not
depend on whether the updating of all agents is performed
synchronously, or in a random asynchronous fashion.

Watts introduced the above model [13] to demonstrate the
interaction between network topology and individual thresh-
olds in the spreading of rumors and fads. He used percolation
methods to determine whether a single activated initial agent
can induce network-spanning cascades of activation. We fo-
cus here on calculating p, the average fraction of active
nodes in the steady state, where the ensemble average is over
realizations of networks and threshold values, and in the
limit of infinite network size: N — oo. Watts’ criterion for glo-
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bal cascades is recovered in the py— 0 limit (since py=1/N
for single-node initialization) but important differences are
found when the seed size is finite. The quantity p measures
the average avalanche size, and has recently been studied for
dynamics on directed random graphs, with applications to
random Boolean networks [19], and on small-world topolo-
gies [20]. The magnetization in the zero-temperature
random-field Ising model (RFIM) [21,22] is also closely
analogous to p; the agents’ threshold values correspond to
the local quenched random fields of the RFIM. There are,
however, two important differences: (i) the RFIM does not
exhibit the PAP, since spins may flip either up or down de-
pending on their local field; (ii) the RFIM has not been stud-
ied on random graphs of arbitrary degree distribution. Ana-
lytical solutions for the RFIM have been developed in the
mean-field case [21] and on Bethe lattices [22,23]. Our ap-
proach reduces to the latter in the case of regular random
graphs, where each node has exactly z neighbors (p;= &, for
integer z), provided that p; is zero.

Our main result is that the average final fraction p of
active nodes is given by

o & k
p=po+(1-p) 2 pi 2 (m)qﬁ(l —qoc)""”F<ﬂ), (1)

k=1 m=0 k
where ¢.. is the fixed point of the recursion relation

Gni1=po+ (1 =py)G(g,) forn=0,1,2..., (2)

with go=py, and the nonlinear function G is defined by

S
G(q>=E§pk2( . )qmu—q)k-‘-mF(@). (3)

k=1 m=0 k

Here z is the mean degree of the network, z=2kp;. We post-
pone the derivation of (1) to the end of the paper, and first
examine some of its consequences.

Figure 1 shows p in the case of uniform thresholds (all
nodes have identical threshold r=R) on Poisson (Erdds-
Rényi) random graphs with degree distribution p,=ez"/k!.
In Fig. 1(a) p is color coded on the R,z parameter plane for
seed fraction p,=107%; Fig. 1(b) compares p at R=0.18 with
numerical simulations for several p, values, as a function of
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FIG. 1. (Color online) Average density p of active nodes in a
Poisson random graph of mean degree z and uniform threshold
value R. (a) Color-coded values of p from Eq. (1) on the R,z plane
with seed fraction py=1072. Lines show approximations to the glo-
bal cascade boundaries: the solid line encloses the region where (5)
is satisfied; the dashed line represents the extended cascade bound-
ary from Eq. (6). (b) Values of p at R=0.18 from Eq. (1) (lines) and
numerical simulations (symbols), averaged over 100 realizations
with N=103. Seed fractions are py=1073 (solid), 5 X 10~* (dashed),
and 1072 (dot-dashed). The arrow marks the cascade boundary
given by Eq. (5) in the limit of zero seed fraction.

z. The theory shows excellent agreement with simulations.
Note the smooth transition from p=~0 to p~1 near z=1, and
the discontinuous transition back to p~0 at larger z values.
The z location of the upper transition clearly depends sensi-
tively on the initial activated fraction p.

A global cascade occurs with high probability when a
small seed p, results in a large value of p. Writing G(q) as
=7 ,Ceqt with coefficients

sl - 4 n
= 3 () Jenetae). @
k=€+1 n=0 n Z k

and linearizing Eq. (2) near ¢=0 gives a (first-order) condi-
tion for global cascades to occur: (1—py)C,;>1, since this
guarantees that ¢, increases with n, at least initially. This
cascade condition may also be written as

3, M= Dpk{F(%) —F(O)] >

k=1 <

. 5
= &)
In the limit py—0 and with F(0)=0, this reduces to the
condition derived by Watts using percolation arguments [ 13].
On the R,z plane of Fig. 1(a) the condition (5) is satisfied
inside the solid line; for R=0.18 in Fig. 1(b), (5) predicts
cascade transitions at z values between 5.7 and 5.8 for both
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FIG. 2. (Color online) As Fig. 1, but threshold distribution is
Gaussian with mean R and standard deviation 0.2, and seed fraction
po=0. (a) Cascade boundaries as in Fig. 1; the arrow marks the
critical point (R,,z.) described in the text; (b) theory and numerical
simulation results (N=10°, average over 100 realizations) at R
=0.2 (solid), 0.362 (dashed), and 0.38 (dash-dotted).

po=107 and 1072 (close to the z value marked by the arrow),
but the simulations and full theory show that the respective
transitions are actually near z=~6.4 and 9.2. Condition (5)
clearly does not accurately represent the effects of finite seed
size [nor of nonzero F(0); see below], because the function
G is not well approximated by a straight line near the critical
parameters for cascade transitions.

We seek an improved cascade condition by extending the
series for G(g) to order ¢°. This approximation results in a
quadratic equation for the fixed point ¢,, which we represent
as ag>+bq.+c=0. Under the approximation of small g val-
ues, we interpret the existence of a positive root of this qua-
dratic equation to imply ¢..<<1, and hence the impossibility
of global cascades. Note that the first-order approximation
(5) requires b>0 for global cascades. However, when the
nonlinear behavior of G is important, it is still possible for
global cascades to occur when b is negative, provided that
the full solution of the quadratic equation precludes positive
real roots. We therefore extend the cascade boundary to in-
clude regions where either »>0 (as in (5)) or b*>~4ac <0,
the latter giving (to first order in p,)

(Cy = 1)>=4CyCy+2py(Cy — C1 = 2C, +4CyC,) < 0.
(6)

It is straightforward to plot this extended cascade condition:
the dashed lines in Figs. 1(a) and 2(a) clearly give much
improved approximations to the actual boundaries for global
cascades.
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FIG. 3. (Color online) Bifurcation diagrams as described in text
for dependence of g., on z for 0=0.2 and py=0 at R=(a) 0.35, (b)
0.371, and (c) 0.375.

Figure 2(a) shows p on Poisson random graphs with
thresholds drawn from a Gaussian distribution of mean R and
standard deviation o=0.2. Unlike the assumption in [13] that
F(0)=0, a Gaussian distribution necessarily implies the pres-
ence of negative-valued thresholds among the population, so
F(0)>0. Negative-threshold agents act as a natural seed,
since they activate regardless of the states of their neighbors.
The presence of these innovators [13] allows us to set pg
=0 in this case. The extended cascade condition (6) again
gives a good approximation to the discontinuous p transition
at high z values. Figure 2(b) focuses on the low-z transition
and highlights the existence of a discontinuous transition in z
for certain threshold distributions. This is qualitatively dif-
ferent from the previously-studied case [13] where only con-
tinuous low-z transitions were found.

Bifurcation analysis of Eq. (2) elucidates this result. In
Fig. 3 we plot the roots of the fixed-point equations G(g)
—q=0 (recall that py=0 here; extension to nonzero p, is
straightforward) as functions of z, for different values of the
mean threshold R. Thick solid and dashed lines denote stable
and unstable fixed points respectively [24]. The PAP means
the value of ¢., achieved at a given z is that of the lowest
stable branch above g=p,. The occurrence of triple roots as
R is increased causes the smooth low-z transition seen in Fig.
3(a) to become discontinuous [as shown by the thin solid line
in Fig. 3(b)], as previously seen in the numerical simulations
of Fig. 2(b). The discontinuous low-z transition occurs for
R>R,, where the critical coordinates (R.,z.) and the value
q=q. where the triple root appears are found by numerical
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root finding for the system of three equations ¢g=p,
+(1-pe)G(q), (1-py)G'(¢)=1, and G"(¢)=0. For 0=0.2
this yields (R,,z.)=(0.3543,3.136); this point is marked with
an arrow in Fig. 2(a). We remark that the discontinuous tran-
sition from ¢.,=1 to g,,=~0 [which induces a similar transi-
tion in p through Eq. (1)] occurs due to a saddle-node bifur-
cation [24]. This behavior is quite generic, occurring for a
wide variety of parameters, with the exception of the special
case studied by Watts. For p,=0 and F(0)=0 as in [13], the
coefficient C is zero and the fixed-point equation always has
a root at ¢=0, with transcritical bifurcations on the g=0 line
giving rise to the observed transitions. However, any nonzero
seed size replaces the transcritical bifurcations with saddle-
node bifurcations as described above. We have confirmed the
accuracy of these results [and Eq. (1)] against numerical
simulations on other configuration model network topologies
[1], including power-law degree distributions (with exponen-
tial cutoff): p, ok "exp(—k/ k) [17].

We turn now to the derivation of Egs. (1)—(3). Our ana-
Iytical approach is based on methods introduced by Dhar et
al. to study the zero-temperature random-field Ising model
on Bethe lattices [22]. The RFIM is a spin-based model of
magnetic materials, and its zero-temperature limit has been
extensively studied as a model for systems exhibiting hyster-
esis and Barkhausen noise [21]. A Bethe lattice of coordina-
tion number z (for integer z) is an infinite tree where every
node has exactly z neighbors. Dhar et al. derive analytical
results valid on Bethe lattices, but their numerical simula-
tions show that the theory also applies very accurately to
random graphs where every node has exactly z neighbors,
provided that short-distance loops are rare. To analyze Watts’
model we extend the approach of [22] in two ways. First, we
consider treelike random graphs with arbitrary degree distri-
butions, rather than the Bethe lattices of [22]. Second, we
account for the PAP, which is the essential difference be-
tween Watts” update rule and standard RFIM dynamics. This
difference between the update rules is crucial to our deriva-
tion of the p, dependence of the activated fraction p.

We begin by replacing the given random graph (with de-
gree distribution p;) by a tree structure. The top level of the
tree is a single node with degree k, and this is connected to
its k neighbors at the next lower level of the tree. Each of
these nodes is in turn connected to k;— 1 neighbors at the next
lower level, where k; is the degree of node i. The degree
distribution of the nodes in the tree is given by p,=(k/z)p;.,
which is the distribution for the number of nearest neighbors
in a connected graph [1,25]. To find the final density p of
active nodes, we label the levels of the tree from n=0 at the
bottom, with the top node at an infinitely high level (n
— ). Define ¢, as the conditional probability that a node on
level n is active, conditioned on its parent (on level n+1)
being inactive. Consider updating a node on level n+1, as-
suming that the nodes on all lower levels have already been
updated. With probability p, the chosen node has k neigh-
bors: one of these is its parent (on level n+2), and the re-
maining k—1 are its children (on level n). Since a fraction p,
of nodes were initially set to be active, there is a probability
po that we have chosen one of these nodes. In this case the
state of the node remains unchanged. On the other hand, with
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probability (1—p,) the node in question is inactive. In this
case we must consider its neighbors. Each of the k—1 chil-
dren is active with probability ¢,. We also assume its parent
is inactive. Thus the node has m active children (and there-
fore k—1—m inactive children) with probability (k,—nl )qZ’(l
—q,)F"17". The probability that its threshold r; is less than its
fraction of active neighbors m/k is given by F(m/k), and
combining the independent probabilities yields Eq. (2) for
gn+1- The probability that the single node at the top of the
tree is active is given by adding the probabilities for two
independent cases: either it is already active as part of the
originally activated fraction (with probability p,), or it was
initially inactive (with probability 1—p). In the latter case, it
will become active if sufficiently many of its k neighbors (all
on the next lower level) are active. Noting that the top node
has degree k with probability p,, we conclude that the total
probability of it being active is given by Eq. (1).

Although the theory is defined in terms of level-by-level
updating on a tree, these results also apply to the random-
graph Watts model, provided that (i) the network structure is
locally treelike, (ii) the state of each node is altered at most
once, and (iii) the steady state is independent of the order in
which nodes are updated [23]. We note that condition (i) is
true in configuration model networks, where the clustering

PHYSICAL REVIEW E 75, 056103 (2007)

coefficient scales as 1/N as N— oo [1]. It does not, however,
hold in small-world [20,26] and other real-world networks
where clustering and loops play an important role. Condition
(ii) is guaranteed by the PAP, and (iii) holds for this and
related unordered binary avalanche models [19].

In summary, our main result is Eq. (1) for determining the
expected fraction of active nodes (mean avalanche size) p
due to the activation of a seed fraction p, of random nodes.
The simple conditions for global cascades (5) and (6) follow;
these substantially extend Watts’ original result to include
nonzero initial seed sizes. Values of p, as low as 0.1% have
dramatic effects on the location of cascade transition points
[see Fig. 1(b)]. Transitions in the dependence of p upon the
mean network degree z are explained by the appearance of
saddle-node bifurcation points. Of particular note is the fact
that in certain parameter regimes the low-z transition may be
discontinuous.
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